Ultimaker User Story

See how businesses like yours leverage Ultimaker 3D printers, software, and material choice to grow and innovate every day.

Quad Lock

Smartphone-mounting solution developed with 3D printing

With features such as multiple lenses, image stabilization, and advanced software, modern smartphones can produce images that rival the quality of professional cameras.

Because of high levels of vibration, however, photos and videos taken on a smartphone while riding a motorcycle tend not to achieve this quality – not to mention the risks posed to phones that aren’t properly secured during such activities.

These challenges sent Melbourne-based company Quad Lock on a mission to develop a solution that would keep smartphones safe and protected – while maintaining professional photographic image quality.

The mission’s result? The Quad Lock Vibration Dampener, a mount for motorcycles that both stabilizes and protects smartphones. It features a dual-chassis suspension system with precision-engineered silicon grommets that absorb vibrations, reducing more than 90% of the high-frequency vibrations produced by motorcycles.

The Quad Lock Vibration Dampener features a dual-chassis suspension system

Designing the Quad Lock Vibration Dampener

For the Quad Lock team, the first step in designing the Quad Lock Vibration Dampener was to create a method that could repeatedly reproduce the real-world vibrations of a motorcycle. To do so, the team analyzed users’ riding behaviors and patterns, and worked with leading vibration experts to develop a testing method.

This method became a tool that enabled the Quad Lock team to create designs targeting specific frequencies. What eventually became the Quad Lock Vibration Dampener was successfully put through rigorous performance testing, with the final design being extensively tested by the device’s end users.

Design iterations for Quad Lock’s smartphone mount

Overcoming validation challenges

To gather feedback and quickly implement it into design iterations, the Quad Lock team needed to create physical components that were strong enough to be used on test rigs and real-world applications, opening the door for 3D printing technology – specifically the Ultimaker S3, Ultimaker 3, and Ultimaker 2+.

The Quad Lock Vibration Dampener’s product development process consisted of two main phases: rapid concept iteration and real-world testing. More than 100 iterations of the design were produced, each testing factors such as the impact of dimensional changes, clearances, and material durometers.

This high turnover rate allowed the team to gather feedback, implement it, and produce the next iteration as cheaply and quickly as possible – with multiple iterations sometimes being produced in the span of a single day.

These designs were strong enough to withstand hours of testing on a vibration test rig, from which the team gathered valuable feedback and data. This kept the team’s morale and motivation high, and helped them streamline their production workflow, saving time and money.

The Quad Lock Vibration Dampener reduces more than 90% of the high-frequency vibrations produced by motorcycles
Precision-engineered silicon grommets absorb vibrations and protect smartphones

A ‘fully embedded’ design process

Today, Quad Lock’s production facility is responsible for products distributed to millions of international customers. Additive manufacturing technology is now fully embedded in Quad Lock’s design, prototyping and production processes. This greatly benefits the company as it expands its product range, with mounting solutions for cars, runners – even interior walls of houses or office buildings.

On the road with the finished product

Credit: Ultimaker

Yasuhide Yokoi and Final Aim Inc.

Rapid iterations of an autonomous delivery robot


Yasuhide “Yasu” Yokoi is the cofounder of design and technology firm Final Aim Inc., which works with laboratories, startups, and multinational companies to transform ideas into tangible solutions. There, he and his team use Ultimaker 3D printers to better enable rapid design iterations during the prototyping phase.

One of the company’s latest projects is the OSTAW Camello, an autonomous package delivery robot.

Revolutionizing package delivery

The Camello was designed to address issues in the delivery logistics chain in Singapore, which causes high shipment costs and operational complexities. Due to low loads and long waiting periods in loading and unloading bays, package deliveries are often inefficient – a fact exacerbated by high delivery volumes and tight delivery deadlines.

To tackle this challenge, Final Aim collaborated with a Singaporean robotics start-up OTSAW Digital PTE LTD, with the Camello being the final product.


Watch the video

The Camello is user friendly, featuring an ergonomic cargo space and sleek design – optimal for Singapore’s urban environment. Plans are currently underway for it to be used by various industrial key players, delivery companies, and retailers throughout Singapore, creating an improved ecosystem that provides smooth and efficient delivery to customers, while increasing profit margins for those businesses that use it.

The birth of the Camello

As with any product, several phases were involved in Camello’s design, with the Ultimaker S3, Ultimaker Cura, and CAD software acting as Yasu’s and Final Aim’s greatest companions throughout the process.

First came the robot’s concept development and evaluation. From the initiation to ideation, he used both hand-drawn design sketches and CAD software.

Industrial designer Yasuhide Yokoi with the Ultimaker S3 and Camello prototypes

Once he developed the idea, Yasu began the process of presenting it to the higher-level management, frontline members, and end-users. This divergent approach allowed Yasu to gain as much feedback as possible, which he could then use to refine, improve, and further flesh out his concept.

Early sketches of design ideas
A CAD design iteration, which can be 3D printed

Next came the prototyping phase. As Yasu now had numerous potential ideas, he needed to rapidly actualize them – often on tight deadlines. Luckily, this was a task that 3D printing was able to easily handle. Compared to other common prototyping methods such as sculpting or carving from Styrofoam, chemical wood, or industrial clay, 3D printing is much more efficient – freeing up time for Yasu to work on other design tasks.

“More than just cost-cutting, 3D printing has added value to my process,” Yasu said.

3D printed iterations of the robot, ready to be tested and compared

Finalizing an intuitive design

Yasu was also responsible for ensuring that the Camello’s final design was of excellent quality. As his works often incorporate organically curved surfaces and silhouettes, which are often difficult to implement, he needed to create numerous iterations. 3D printing technology utilizes the contour layers of printouts to analyze the curvature of surfaces – essentially an equivalent to the zebra mapping that CAD software performs.

“The Ultimaker S3’s double extrusion feature has [also] been essential to my everyday design applications,” Yasu said. “Together with Breakaway and PVA material, my printing experience has become exponentially more efficient. I am deeply satisfied with the resulting quality as it leaves behind no support structure remaining.”


Finished 3D printed prototype in the Ultimaker S3
Camello autonomously delivers groceries around Singapore

For the Camello to be a success, its design had to be intuitive and accessible at first glance. The design process, therefore, involved divergent ideation, exploring all possibilities, which were then carefully narrowed in focus. Development speed was also critical for stakeholders’ requests.

3D printing enabled these stakeholders to see and touch a physical product, deepening their understanding of the Camello’s concept and design – and streamlining the decision-making process.

Credit: Ultimaker

Old Dominion University

A student engineering makerspace that exceeds expectations

Old Dominion University uses Ultimaker 3D printers to deliver a new level of innovation and confidence for engineering students.

When engineering student Aric Veatch started helping out at the university’s new Engineering Makerspace and Invention Center (EMIC) in 2017, he was intrigued by the center’s Ultimaker 3D printers. “The long-term and operational data on the Ultimaker systems was far better than the nearest competitor, and the purchase cost was exceptional,” said Veatch. “Seeing if they lived up to the expectations set was the first thing on my mind.”

In 2017, the dean of the Frank Batten College of Engineering & Technology at Old Dominion University in Norfolk, Virginia, had a vision to create an advanced makerspace that was owned and operated by students. As a result, the $1.5m Engineering Makerspace and Invention Center was founded, providing a resource for any student to try out new design ideas. The center offers a range of resources including CAD design and testing, electronics production, metal, wood, and composite machining, welding, finishing, and 3D printing.

“The center was built with the mission to produce engineers as critical thinkers, leaders, and problem solvers,” said Rafael E. Landaeta, Ph.D, associate Engineering Makerspace and Invention dean at the Frank Batten College of Engineering & Technology. “Our aim is to give student engineers the edge they need with employable skills for the market.”


Inside the ODU Engineering Makerspace and Invention Center
The Ultimaker 3D printer in operation

With the 3D printers, the intent was for students to have access to rapid prototyping tools, so they could create finished parts at the attached workspace area that has an array of traditional manufacturing tools. According to Veatch, however, the quality of the 3D printers and materials was high enough that most designs are not just being prototyped in the maker-space but produced as 3D printed end-use parts.

“We wanted to have a variety of different printers, but we paid close attention to the reputation of the manufacturer, the long-standing reliability of its service, and how easy to use its products are,” said Dr. Orlando Ayala, the director of EMIC. “Undeniably, Ultimaker did fit all the criteria.”

An Evolution in learning

The EMIC was designed to enable ideation and prototyping of these ideas, and there were a lot of students keen to take the opportunity. The two Ultimaker S3 and one S5 desktop 3D printers quickly became part of the engineering department’s syllabus. Veatch was appointed as the student operations manager as part of his graduate studies to operate the 3D printers as well as other engineering systems in the EMIC.

“The usage on the 3D printers ramped up quickly,” he said. “By November 2019, all the printers were in constant use and we had ordered another Ultimaker S3 to help with demand.”

The Ultimaker systems use fused filament fabrication (FFF) technology and are compact enough to fit on a desktop while delivering generous build sizes: The S3 offers a build size of up to 230 x 190 x 200 mm with dual material fusion, and the S5 can build up to 330 x 240 x 300 mm—both with layer thicknesses as small as 20 microns.

These specifications make it possible for the students to think big. The ideas and parts being created advanced quickly to the point where students were not just designing and producing parts for coursework, but were experimenting with and producing parts for other engineering challenges.

Parts produced range from fidget spinners and fictional character masks to difficult-to-source parts for vehicles.

Test prints including a 4-stroke engine printed in white PLA, tensegrity table (yellow ABS), spiral Christmas tree (white and blue ABS, and an articulating hand (gray PLA)

Ultimaker also offers over 150 materials for its customers, and the engineering students quickly focused in on their favorites.

“The materials delivered by Ultimaker, especially TPU and PLA, make it appropriate to deliver end-use parts for certain engineering scenarios, such as bushings for a gear shift,” said Veatch. “It has been amazing to watch the evolution in what students believe is possible with 3D printing, and they quickly went from basic to very advanced projects.”

Ultimately, he says, 3D printing is enabling a generation of better engineers who think in the 3D space and are evolving at a faster rate.

“The experience of the makerspace with Ultimaker has meant that our student engineers have completely exceeded expectations of what could be achieved,” said Dr. Landaeta. “We have been completely blown away by the students’ work.”

Ease of operation

Veatch quoted the following benefits with production using the Ultimaker platforms: ease of use, ease of maintenance, high-quality materials, comprehensive software, and low cost of ownership.

“Once I had the 3D printer out of the box, it took half an hour to be up and running,” said Veatch. “Since you can switch around the print cores easily, it makes it easy to keep a printer going while you repair another.”

He also cites the high-quality materials supplied with the Ultimaker, including the PLA and TPU materials, but also the freedom to source and use filament from other sources without limitations.

All Ultimaker systems come supplied with the Cura software—a free, high-performing 3D print preparation software solution. It operates with all major CAD file formats and is open source, enabling availability to anyone.

“The Cura software is just great for the print preparation,” he said. “You can also do changes to the print data on the fly during a print, which is great for fixing a problem without having to totally restart the build.”

Engineering in a virtual class

The stay-at-home orders for students and faculty at educational institutions across the country have disrupted many classes. However, both Dr. Landaeta and Dr. Ayala have taken it in stride as a very fast, and unexpected, pilot study into how engineering studies can be conducted in a virtual setting.

“Virtual engineering processes have been successfully implemented across commercial organizations,” said Dr. Landaeta. “However, this has required a good investment in time and technologies. These last three months just accelerated what we believed was going to take years to become normal in engineering.”

Dr. Landaeta points out that a big portion of engineering requires hands-on work for the production of parts and products, which means that while the design work can be easily conducted in a virtual space, the prototyping, testing, production, and maintenance stages still need an extended team in a physical space. However, 3D printing is helping overcome some of these limitations.

For the upcoming Summer Bridge program, which introduces graduating high school students to the university’s engineering program, 3D printed parts became a cost-effective option to continue the class in a virtual environment. The team has cost-effectively 3D printed and delivered entire transmission models to the students so they can continue the program in a virtual setting.

“Low-fidelity 3D printing technologies are affordable enough to have them at home,” said Landaeta. “Nothing replaces touching and holding a prototype, moving it, placing it in perspective against other objects, and feeling its surface.”

To help prove the theory, the 3D printers were taken to Veatch’s home when the lockdown started, where the small desktop footprint remained easy to handle.

“Moving the 3D printers around is fast and easy,” said Veatch. “It is less easy to move the bigger traditional manufacturing machines plus you have to have space for them. The Ultimakers are clean and small enough to be used in my house.”

3D design data is sent to Veatch across the university’s intranet, the parts are printed, and then shipped back to the student for analysis and testing.

“The Batten College of Engineering & Technology plans to support the education of this new engineering normal. We now need to teach our students how to be successful engineers in virtual engineering environments,” said Dr. Landaeta. “3D printing technologies are at the forefront of these efforts, allowing students to prototype from campus or from home.”

The EMIC is now planning to further expand the amount of 3D printers available, hoping to operate between 12 to 20 in the future. They are also looking to expand the operation of the 3D printing with the Ultimaker Digital Factory software to help manage the 3D printer fleet as it grows.

“We are very happy with the Ultimaker 3D printers. The students have been able to work on amazing projects with ease,” said Dr Ayala. “We are planning on buying more Ultimaker 3D printers in the future.”

Watch Ultimaker S3
Credit: Ultimaker


Driving the transformation of physical to digital inventory with additive manufacturing

Azoth has built a new business helping manufacturing customers have machine parts right on time, while saving thousands of dollars.

When engineers get enthusiastic on the topic of additive manufacturing, it can be compelling. Indeed, in the presence of Cody Cochran, Azoth’s general manager, and Ronnie Sherrer, polymers engineering lead at Azoth, you can’t be anything but a fan. Their expertise and energetic approach have been successful in consistently delivering new value propositions to their manufacturing customers through the intelligent application of additive manufacturing and 3D data for end-use parts.

Additive manufacturing and materials have recently evolved to the point where many end-use parts can be produced tool-free and at a lower cost than traditional methods. According to Cochran, it is all about identifying parts in their customers’ inventories that meet the specifications and having a clear business case. Then they are evolved into a digital inventory for immediate, on-demand part production.

“Not all parts are ideal for additive,” said Cochran. “We sort through and find where the complexities are in the supply chain, the overload of inventory, where parts often fail, and build a business case for each one.”

Azoth was formed by the EWIE Group of Companies (EGC) to bring the advantages of additive manufacturing to its customer base. EGC focuses on fulfilling the indirect manufacturing needs of its Fortune 500 customer base across 12 countries, with customers such as John Deere, GM, and Ford. Azoth also focuses on those indirect needs by applying additive manufacturing to machine parts.


Azoth have achieved significant part cost reductions for customers, reduced inventory, and streamlined parts supply

The Azoth Approach

As customer engagement begins, the team at Azoth takes a methodical approach by working through their inventories and initially identifying machine parts that are overstocked as a result of minimum order quantities or that are often out of stock because of lengthy production lead times of five to 10 weeks—or longer. The team then goes on to identify parts that have a high failure rate or that need some re-engineering for greater efficiency. All of these parts are wasting their customers’ money, wasting time, and causing unnecessary complexity in the supply chain.

The Azoth team is equipped with 3D scanners and software so that parts without CAD data can be reverse-engineered and then re-engineered, if necessary, to improve mean time between failure (MTBF). Material analysis is applied, as well as an understanding of the tolerances in play. And asa part is validated, an analysis of cost—including post-processing, material, build times, and part size—is delivered.

Selecting the right 3D printer and materials is also part of this equation. Azoth uses both metal and plastic additive manufacturing and is particularly reliant on its Ultimaker 3D printers in this process. The Ultimaker systems use fused filament fabrication (FFF) technology and are compact enough to fit on a desktop while delivering generous build sizes: The S3 offers a build size of up to 230 x 190 x 200 mm and the S5 can build up to 330 x 240 x 300 mm—both with dual material extrusion and layer thicknesses as small as 20 microns.

“The materials and the printers from Ultimaker are key in this process,” said Cochran. “The low cost of operation, the high-quality materials, have made our success possible—providing significant cost reductions for our customers.”

The team also looks at metal parts to see if they can be produced more efficiently in plastic while maintaining tolerances and performance.

“The Ultimaker materials are less expensive and often outperform traditional plastics, and even some metals,” said Cochran. “With some gripper finger parts that were originally machined from metal, we took the cost from $350 down to $75 per part by re-engineering them for plastic additive production. And they maintained performance.”


Aluminum gripper fingers converted to 3D printed polymer gripper fingers, designed with added hardened dowel pins

The types of parts that the Azoth team analyzes include jigs and fixtures, gripper fingers, blow-off nozzles, gage handles, and more. They look for parts that will benefit from being produced additively, and with no tooling, tool setup, or minimum order quantities, amazing time and cost savings can be made.

“The average person wouldn’t find these parts sexy in any way,” said Cochran, “but these are the workhorse parts that enable production to continue. We work to eliminate machine downtime on our customers’ shop floors, reduce complexity, reduce cost, and shrink physical inventory. And we have been successful at it!”

Azoth increased performance by designing a nozzle that hits the part exactly where it should – previously this was unable to be manufactured

Take One, Make One

Once the customer’s digital inventory is in play, Azoth uses a model it calls “Take One, Make One.” This is a direct form of on-demand production where as soon as a replacement part is taken, a new part is made. Azoth operates this through synchronization with parts vending machines and ERP/MRP systems that send an order to Azoth’s competency center. The new part is typically built and shipped within 24 hours.

“The vending machine implementation can generate instant work orders,” said Sheerer. “This means that the customer maintains a limited inventory driven by actual usage and not based on random requirements, such as minimum order requirements. This saves money and increases efficiency for the manufacturer.”

Dynamism, a provider of 3D printing solutions, materials, and consulting expertise located in Chicago, Illinois, was a key collaborator in the company’s TOMO initiative. The Azoth team was introduced to the Ultimaker platforms by Dynamism, and both teams maintain a strategic relationship to push the boundaries of 3D printing.

“The continual support, expertise, and creativity from the Dynamism team allows us to meet the needs of our customers,” said Cochran. “Their help means we can always offer the best solutions, materials, and outcomes.”

This automotive fixture is 3D printed with magnet inserts for self-locating the component
In the event of running out of inventory of a steel injector pin, a polymer replacement can be 3D printed in two days

The results

Each part produced by Azoth is delivered with a proven business case for the customers. Depending on the part, the business case can be quite different.

“Our approach disrupts the status quo in a positive way for our customers,” said Sheerer. “When we transitioned a simple wear pad part to additive with Ultimaker, it resulted in $30,000 in cost savings for the customer. That is what we call a business case.”

The ability to rapid prototype parts is also a part of the work done by the Azoth team. For some prototype cutter parts, the customer would typically have them CNC machined in steel, which took 12-14 weeks. The Azoth team had plastic prototypes that could be used for a direct, accurate fit and checked within one day. Azoth’s results speak for themselves. They are regularly achieving cost reductions of 50-90%.

The lead time for this prototype cutter part is one day with 3D printing, compared to 12-14 weeks with CNC machining

“With one gripper finger part, we produce about 30 a month at about half the cost of the traditionally manufactured part,” said Cochran. “We tested the new part with SLS nylon, SLA-based resin, but ended up using the PA 4035 on the Ultimakers. It replaced Delrin, and that’s a tough, workhorse material in our world.”

The Azoth team is also able to produce emergency parts to help reduce machine downtime. One example was of a tool steel injector pin that ran out in inventory. The team had a polymer replacement pin in 48 hours, whereas the 3D metal replacement took a week.

Azoth are able to produce 30 of these gripper fingers for end of arm tooling each month with Ultimaker 3D printers

With the tools and expertise, the Azoth team is also able to re-engineer parts for better performance. Complex blow-off nozzles with designs that accurately target the air flow are great examples—and are simple to produce with additive manufacturing.

The Azoth team has proven to itself and its customers that additive has a valuable and important place in the manufacturing supply chain, and both Cochran and Sherrer are keen to continue to lead, innovate, and help customers be more successful.

“Daily, we are changing mindsets within our customers as we deliver valid business cases on their parts inventory using additive manufacturing,” said Cochran. “With Ultimaker 3D printers and materials, the cost is right—they offer easily scalable production and a reliability that we couldn’t have anticipated.”

Start finding 3D printing applications
Credit: Ultimaker

Schwartz Off Road Motorsportz

Saving time on and off the track with 3D printing

Owner and driver, Erik Schwartz of Schwartz Off Road Motorsportz is an engineer by trade and spends all of his free time tinkering and maintaining his vehicle to compete in the Championship Off Road Series. Schwartz has become adept at making improvements on the fly. In order to turn these ideas into reality, Schwartz utilizes Ultimaker 3D printing technology.

Once considered a novelty, the Ultimaker product line has become a necessary tool for this team to compete at a high level. With advanced material options available with the Ultimaker S5, Schwartz Off Road Motorsportz (SORM) is saving time on and off the track.


Tomorrow is the big race. All week long, the team has been preparing their Side by Side (SxS) vehicle to compete and win. Suddenly, during their preparation on Thursday afternoon the antenna clamp breaks. This is bad news and without a proper replacement, communications are shut off between the pit crew and the race officials —creating a very unsafe environment for the driver. With less than 24 hours until the race weekend, it’s impossible to get a part produced and shipped in time. Adversity calls for a creative solution.

This scenario is common for those who participate in all sorts of off road sports. Typically, the racing teams are small and fueled by passion, so they tend to be cost conscious and resourceful when it comes to problem solving. Schwartz Off Road Motorsportz (Oshkosh, WI) is one of the many family-owned teams competing in the Championship Off Road Series, but their approach to engineering solutions is anything but common.

Erik Schwartz, Owner and Driver, has worked with 3D printing since high school. and knows what type of value it can provide for quick-turn answers to complex problems. Combining his passion for motorsports with his affection for 3D printing enabled his team to do more with less. “Some people want to tinker with 3D printing,” said Schwartz. “Not me. Quality matters and when I hit print, I want it to be done right.” A few years back, Schwartz and his team ran into several design and performance issues for the SxS vehicle and wasted no time integrating the Ultimaker 2. Since then, it has clocked up more than 4,000 hours of printing, and the team has upgraded to the Ultimaker S5.

Antenna grip part
A 3D printed antenna clamp


Operating on passion and a limited budget is a real challenge for those who wish to compete at a high level. For SORM and many other racing teams, it’s imperative to build, test and optimize the vehicle without draining the bank account. Traditionally, races are held bi- weekly throughout a given season and adjustments are constantly made. Whether it’s fixing broken parts, replacing others or making design improvements to enhance performance, this requires time and money. “When a part issue arises, we typically outsource to a machine shop,” said Schwartz. “It gets expensive and can take up to three weeks for delivery.”

Like most racing teams, the SORM team has limited fabrication methods inhouse and must rely on third party businesses to produce parts from sheet metal. Parts that need consistent replacement on the vehicle due to wear and tear are brackets, fixtures, clamps, and a variety of mounts. While some parts can last an entire season, others need replacement every other weekend. “These parts range from $500 – $750 per,” said Schwartz. “It’s difficult to absorb that type of cost, especially when we require backups or we make a design mistake. Let’s face it, we don’t always get it right the first time.”

In addition to the problem of replacing worn out parts, Schwartz and his team are constantly tweaking and finding new ways to keep their vehicle competitive. Ideation is one of their key advantages, so the team needed to find a low-cost way to test ideas and validate the functionality of certain parts. Whether it’s the development of lighter weight components or redesigning air passageways, every new design can be the difference between winning or losing. “Fans may only see the 20 minutes on the track but behind the scenes, our team puts a lot of time and effort during the week to make this work. We need it done right,” said Schwartz.

“It can be the difference between finishing tenth or first”


Clamp part
A 3D printed clamp incorporating bolts
Radiator mount part
The improvised 3D printed radiator clamp


Schwartz is a veteran Ultimaker user. For years, the team owned and operated the Ultimaker 2, single extrusion 3D printer. Using it predominantly as a prototyping tool, the team printed in PLA to test form, fit and function for a variety of ideas. After 4,000+ hours of printing, the equipment continues to run like new and has been a source of curiosity for fans and fellow competitors. “We invite fans into our pit at the race track and it’s always the topic of conversation,” said Schwartz. “Like our trailer or tool box, we treat the 3D printer as an important part of the business.” Used mainly for prototyping, Schwartz and his team knew that an upgrade was necessary to take them into production. Enter the dual-extrusion, Ultimaker S5 3D printer.

At the beginning of last season, a costly crash damaged the vehicle in several ways which forced the team to replace the radiator. Due to supply chain problems, the manufacturer quoted a six-month lead time. This was unacceptable, and would cause the team to miss the season entirely. Instead, Schwartz ordered an off-the-shelf radiator and designed several brackets to custom fit it into the vehicle. The Ultimaker S5 was the perfect tool to print and reprint parts out of polycarbonate that would connect to metal brackets that hold the radiator in place. “We were in a super time pinch,” said Schwartz. “The 3D printer saved our season and in some ways, improved it.” With a wide array of advanced materials at their fingertips, the team began using the equipment in ways they never thought possible.

Let’s look at some other applications and benefits, followed by a cost comparison for a typical bracket part.

Performance panels: Accidents happen in motorsports. The back quarter panel is a prime location for damage and if impacted hard enough, can damage the chassis. Instead of purchasing new quarter panels, SORM designed a quarter panel clamp 3D printed with nylon and a TPU insert that could absorb the damage more effectively. Not only does this save them hundreds in replacement cost, the nylon material is more likely to crush then ruin the chassis—which would cost a lot more than just a quarter panel itself.

Complex capabilities: Dual extrusion technology enables SORM to maximize the value of PVA (water soluble) material especially for complex geometries or internal channels. SORM developed an enhanced front grille designed to increase airflow to the vehicle, thus providing a natural cooling mechanism. Machining a custom passageway such as this is nearly impossible, but completely doable with dual material 3D printing combining the strength and functionality of polycarbonate with soluble PVA.

Organization: A working shop can be chaotic and sometimes the smallest details can save time, money and headaches. Printing custom jigs, fixtures and color coded trays have become standard in the SORM shop. Multicolor printing capabilities leads to a better-organized workshop. This is common practice for many larger industrial companies who use this technology to identify safety fixtures and create ergonomically sound devices for workers.

  Traditional method Expedited Ultimaker 3D printers  
Cost $300 – $500 $750+ Negligible  
Time 2 – 3 weeks 2 – 3 days Within hours  

Results and the future

“Materials and data,” Schwartz said confidently. The progress being made in polymer development has become a major benefit to the industry. Stronger rubbers, custom plastics made with chemical resistant properties and improved heat deflection thermoplastics will help move the industry forward. In addition, the data collected will improve part analysis and performance for future product development. The next generation of industrialization is highly connected, and the compilation of data will impact the way companies produce prototypes, spare parts and products.

Ultimaker is the epitome of innovation and continues to lead by example. Its material portfolio boasts over 40 advanced filaments available directly with Ultimaker or accessible through a preferred network of providers. In addition, the CURA software is rated as one of the most user-friendly and intuitive programs available to the community of 3D printing engineers and enthusiasts. Through data aggregation, this software is equipping the industry with the tools to react quicker and perform at a higher level. Similar to Schwartz Off Road Motorsportz, Ultimaker is committed to tweaking, improving, and performing at the highest level possible.

Discover more end-use part applications
Credit: Ultimaker


Rapid prototyping wearable scanners with 3D printing

The NavVis VLX is no ordinary indoor scanner.

It’s the world’s most accurate wearable mapping device with simultaneous mapping and localization (SLAM) technology. Fast, precise, and compact, it allows operators to efficiently capture as-built indoor data for visualization in the AEC industry and elsewhere.

The job of developing such a revolutionary piece of hardware fell to NavVis industrial designers Sarah Godoj and Nils Christensen. To achieve this formidable task, they leveraged the power of rapid prototyping to test and perfect the design.

The result? The ideal balance of device accuracy, accessibility, and ergonomics – validated using Ultimaker 3D printers.

“It’s a marvelous feat of engineering from our team,” said Nils. “You can go hiking with NavVis VLX if you want.”

Nils Christensen 3D printed many shoulder pad iterations to ensure that the NavVis VLX was comfortable
For Sarah Godoj, fast development cycles with 3D printing were key to launching the NavVis VLX on time

Sensors first

Headquartered in Munich, Germany, NavVis specializes in developing next-generation technology that enables accurate mapping of indoor spaces. And given that the wearable NavVis VLX system‘s accuracy had to compete with terrestrial solutions, the scanner’s sensor positioning would be the designers’ top priority.

After many iterations, the team zeroed in on an innovative design that combines two multi-layer LiDAR sensors with four high-res cameras. Together, they measure and map a 360-degree view of the indoor space – mounted at the perfect distance above the operator’s head to keep the operator out of the field of view while allowing the user to see everything in the environment.

With their Ultimakers running day and night, the designers quickly validated designs by connecting PVC tubing to accurately 3D printed angle pieces

But soon after deciding the basic concept, the designers realized that they also wanted to set NavVis VLX apart from other wearable scanners and require nothing to be worn on the users’ back. This was to avoid bumping into anything when the user turned in tight spaces.

Sarah explained, “We used alternatives, like wood and cardboard, but closer to the final design, we didn’t consider anything else, because there was no better alternative than 3D printing.”

Everything in easy reach

This led to a uniquely complicated challenge to keep every user interaction accessible. The touchscreen in particular required a lot of iteration. It had to be in the field of view, but still allow the user to see the floor to find ground control points and avoid hazards.

With so many variables to find the best display angle and positioning, the team once again turned to 3D printing to validate their ideas in more accurate detail.

Joining PVC pipes with 3D printed angles allowed them to test configurations as quickly as possible. The PVC pipes could be easily cut to any length, leaving just the connecting angles to be 3D printed.

“We wanted to have precise angles to really prove the CAD,” said Nils. “This meant it was the perfect mixture of rapid prototyping and real precision.”

With this technique, the team also became well-acquainted with the dimensional accuracy of their in-house Ultimaker 3D printers. Although all 3D prints shrink a small amount as the material cools, they worked out the shrinkage by printing multiple connectors with 0.1 mm difference between each version.

Using Ultimaker Cura settings, the designers increased the detail of their prints as they refined their CAD designs

Designed to fit any body

“Creating a device that fits the human body brings a lot of challenges.” explained Sarah. “But with 3D printing, we could make lots of iterations to get to a good combination of the right size and weight.”

The team’s goal was to create an ergonomic experience that would feel like the user was wearing a backpack on their chest. They loaded filled water bottles onto rough wooden and 3D printed shapes to simulate that weight. If any test user found it uncomfortable, Sarah and Nils knew that they needed to make an adjustment.

This was especially necessary for the shoulder pads. To find the optimal design, the team adjusted settings in Ultimaker Cura to create fast “draft” prints, before progressing to detailed prints. This approach ensured the pads would be comfortable for anyone – without the chance of NavVis VLX sliding off.

The wearable scanner presented so many ergonomic design challenges that 3D printing became their go-to prototyping technology

Another ergonomic challenge was the device’s secure storage in a transport case that a single user could carry and quickly set up on site. For this, a folding mechanism would be required. But where should NavVis VLX safely fold to result in the smallest volume?

Again, the industrial designers used 3D printing to verify the CAD model. They left holes in the arms and temporarily secured them with a long screw inserted into the 3D print.

Rapid prototyping during a pandemic

To create these fast iterations, the team relied on the workhorse output of the Ultimaker 2+ and Ultimaker S5.

Thanks to the printers’ reliability, Sarah and Nils developed a 24-hour iteration cadence that allowed them to test new ideas as quickly as possible:

You could just hit “print” on Friday and go home for the weekend and come back on Monday and it was finished.

Of course, when COVID-19 forced most of the designers to work from home, their workflow had to change. For this, they depended on the remote 3D printing capability of the Ultimaker S5 and Ultimaker Digital Factory.

Despite COVID-19 restrictions, remote printing and monitoring on the Ultimaker S5 meant rapid prototyping could continue without disruption

They were able to securely monitor their print jobs and simply ask someone at the office, “could you please remove the print and press ‘confirm’?” To avoid needing to add new filament halfway through a print, they also set up a second webcam to monitor the spools. This way they could keep iterating regardless of pandemic restrictions.

Nils said, “We always thought that 3D printers are a bit complicated, but the Ultimaker was a nice easy-to-use solution. It always explains the next step or what is happening right now.” 

This ease of use meant that – even though their team consists of 15 designers and mechanical engineers – everyone is slicing parts to 3D print, and “no one is really afraid of touching the Ultimakers”. 

Continuous improvement 

Because NavVis builds its scanners to order, the design team continues to iterate and improve their products using 3D printing. Nils revealed:

Every development step that we have mechanically, in 80% of the cases we 3D print first. Doing that instead of creating parts out of metal blocks with a lead time of up to five weeks. You can imagine it’s quite a cost-saving.

Nils and Sarah continue to refine their 3D printing process. And thanks to Ultimaker’s open filament system, they contribute to NavVis’ sustainable goals by printing increasingly with recyclable materials. 

In that way, they are helping NavVis build a better world – as well as better indoor scanners.

Credit: Ultimaker